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Abstract Most compact heat exchangers and heat dissipating components rely on convection
enhancement mechanisms that reduce the continuous growth of boundary layers. Usually surface
irregularities, in the form of interruptions and/or vortex generators, are introduced in the flow
passages. The resulting geometric configurations are periodic in space and, after a short distance
from the entrance, induce velocity and thermal fields that repeat themselves from module to
module. The numerical models presented here consider the space-periodicity and allow flows that
are stationary at sub-critical values of the Reynolds number, but become time-periodic, or quasi
periodic, above the critical value of the Reynolds number. Space discretizations are achieved by an
equal order finite element procedure based on a projection algorithm. Two-dimensional
schematizations are employed to analyze the effects of surface interruptions and transverse vortex
generators, while three-dimensional schematizations are employed for longitudinal vortex
generators.
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Nomenclature

a ¼ vector of nodal values of a
a ¼ independent variable
A ¼ amplitude
Dh ¼ hydraulic diameter
f ¼ Fanning friction factor
h ¼ average convection coefficient
H ¼ height of the channel, measured in

the z-direction
H ¼ effective stiffness matrix
k ¼ thermal conductivity
L ¼ length, measured in the x-direction
n ¼ outward oriented normal to the

external surface
N ¼ vector of interpolating functions
Nu ¼ average Nusselt number
p ¼ pressure
~p ¼ periodic component of pressure
q ¼ heat flow rate
Pr ¼ Prandtl number
Re ¼ Reynolds number
S ¼ surface
St ¼ Strouhal number

t ¼ temperature
T ¼ dimensionless temperature
u, v, w ¼ velocity components in the (x, y, z)

directions
v ¼ velocity vector
W ¼ width of the channel, measured in

the y-direction
x, y, z ¼ Cartesian coordinates
a ¼ average pressure gradient in the

flow direction x
m ¼ dynamic viscosity
q ¼ time
Q ¼ period
r ¼ density

Subscripts
b ¼ bulk
lm ¼ logarithmic mean
Nu ¼ associated with the Nusselt number
w ¼ wall
0 ¼ associated with the corresponding

smooth duct
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Introduction
Convection enhancement is needed to obtain more compact and less
expensive heat exchangers or to decrease thermal resistances in heat
dissipating components (Kays and London, 1984; Shah and Bhatti, 1987;
Webb, 1987, 1994) As pointed out by Fiebig (1996), the enhancement of
convection is most effectively achieved by limiting the continuous growth of
boundary layers through periodical interruptions, separations and
destabilizations. For this purpose, extensive use is made of specially
configured devices, in the form of offset-strip surfaces, wavy channels,
louvered fins, winglets and ribs. Offset-strip and louvered surfaces mainly
rely on restarts of boundary layers in order to reduce thermal resistances
with respect to continuous plates (Heikal et al., 2000; Zhang et al., 1997).
Wavy channels, winglets and ribs mainly rely on the generation of vortices
that interfere with the growth of boundary layers by separating and,
eventually, destabilizing them. Ali and Ramadhyani (1992) presented a
review of convection enhancement by wavy surfaces, while Fiebig and
Mitra (1998) presented a review of convection enhancement by winglets. In
the literature, many data are also available for convection enhancement by
transverse and angled ribs (Cheung and Huang, 1991; Kukreja et al., 1993;
Lopez et al., 1996; Sundén, 1999; Webb and Ramadhyani, 1985). The bulk of
these studies shows that, in order to reduce thermal resistances, vortices
must not only separate but also recirculate the fluid between core and wall
regions of the flow passages. This is very often the case with longitudinal
vortices. On the contrary, transverse vortices do not produce significant
mixing until flows become unsteady above a critical Reynolds number.
Only then, self-sustained flow oscillations periodically move transverse
vortices upstream and downstream, bringing fresh fluid from the core to
the walls.

Many numerical investigations of convection enhancing mechanisms have
been carried out, following the pioneering work of Kelkar and Patankar
(1987) and Patankar et al. (1977). In particular, the finite-element approach,
introduced by Nonino and Comini (1998), has been applied successfully by
Comini and Croce (2001) and Comini et al. (2002) to the analysis of tube-fin
exchangers, and by Nonino and Comini (2002) to the analysis of ribbed
channels. The purpose of this paper is the illustration of modeling
procedures, rather than the production of exhaustive databases of numerical
results. In this context, two-dimensional schematizations are used for
surface interruptions and transverse vortex generators, while
three-dimensional schematizations are employed for longitudinal vortex
generators. Flows are always laminar, even if they become unsteady above
the critical value of the Reynolds number corresponding to the onset of
self-sustained oscillations. As a consequence, time-dependent models are
utilized in all the simulations.
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Statement of the problem
The geometries considered in this study are made up of the repetition of
identical modules. After a short distance from the entrance, flow and thermal
fields repeat themselves from module to module attaining a fully developed
character. In the two-dimensional schematization of Figure 1 we consider a
wavy channel with an infinite aspect ratio (width W over height H). The
repetitive fields allow the limitation of the analysis to a single module, such as
the one enclosed by the periodic boundaries S1 and S2. On the other hand, it is
possible to reduce the computational domain still further by considering only
one half of the module such as, for example, the one enclosed by the
anti-periodic boundaries S1 and S3.

In the three-dimensional schematizations of Figure 2, we consider ribbed
channels with square cross sections. The rib distribution can be one-sided or
staggered, while the ribs can be transverse (908), or variously angled. When the
ribs are one-sided, we can easily identify two periodic boundaries, such as
S1 and S2. When the ribs are staggered, we can refer to the anti-periodic
boundaries S1 and S3. At periodic boundaries S1 and S2, distributions of
velocity components and dimensionless temperatures are periodic functions.
At anti-periodic boundaries S1 and S3, the relationships between velocity
components and dimensionless temperatures must be expressed by
anti-periodic functions.

Flow and temperature fields
Assuming the thermophysical properties of the fluid to be constant and the
flow to be laminar, the governing equations are the standard Navier-Stokes and
continuity equations. They can be expressed as

r
›v

›q
þ rv ·7v ¼ m72v2 7p ð1Þ

Figure 1.
Two-dimensional wavy
channels: schematic
representation of the
geometry and periodic
(S1 and S2), and
anti-periodic (S1 and S3)
boundaries in the
computational cell
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7 ·v ¼ 0 ð2Þ

In the above equations, v is the velocity vector, q the time, r the density, m the
dynamic viscosity, and p the deviation from the hydrostatic pressure. In the
absence of volumetric heating and neglecting the effects of viscous dissipation,
the energy equation can be written as

rc
›t

›q
þ rcv ·7t ¼ k72t ð3Þ

where c is the specific heat and k the thermal conductivity.
In a periodic fully developed flow, the pressure p can be expressed as the

sum of a linear term, accounting for the average pressure gradient, and a
residual term that behaves in a periodic manner. Thus, we have

p ¼ 2axþ ~p ð4Þ

where a is a constant representing the average pressure gradient in the flow
direction x and ~p is the periodic component. With reference to
three-dimensional schematizations of Figure 2, the symmetric periodicity of ~p
between boundaries S1 and S2 leads to the condition

~pðL; y; zÞ ¼ ~pð0; y; zÞ ð5Þ

while the antisymmetric periodicity between boundaries S1 and S3 yields the
condition

~pðL; y;H 2 zÞ ¼ ~pð0; y; zÞ ð6Þ

Figure 2.
Ribbed square channels:
periodic boundaries (S1
and S2) with one-sided

ribs, anti-periodic
boundaries (S1 and S3)

with staggered ribs;
traces of transverse

(908 ribs) and 458 ribs
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In the above equations, z is the distance from the bottom boundary measured in
the vertical direction and H is the height of the channel.

Appropriate conditions must be specified at wall and periodic boundaries.
At wall boundaries, the no-slip condition holds well

u ¼ v ¼ w ¼ 0 ð7Þ

At periodic boundaries, the symmetric periodicity between S1 and S2 leads to
the conditions

uðL; y; zÞ ¼ uð0; y; zÞ

vðL; y; zÞ ¼ vð0; y; zÞ

wðL; y; zÞ ¼ wð0; y; zÞ

ð8Þ

while the antisymmetric periodicity between S1 and S3 leads to the conditions

uðL; y;H 2 zÞ ¼ uð0; y; zÞ

vðL; y;H 2 zÞ ¼ vð0; y; zÞ

wðL; y;H 2 zÞ ¼ wð0; y; zÞ

ð9Þ

Conditions (8) and (9) do not involve the specification of any inflow velocities.
To obtain the desired value of the average velocity on the cross section S, the
pressure gradient a must be adjusted iteratively as described, for example, by
Nonino and Comini (1998)

�u ¼
1

S

Z
S

u dS ð10Þ

The behavior of the flow is determined by the Reynolds number

Re ¼
r�uDh

m
ð11Þ

and can be characterized, for example, by the Fanning friction factor

f ¼
aDh

2r�u2
ð12Þ

which is directly related to the pressure gradient a. In equations (11) and (12),
we use the hydraulic diameter Dh to compare performances of different surface
configurations. However, the Reynolds number for discontinuous fins is often
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evaluated on the basis of the projected length of a single module (Kays and
London, 1984; Shah and Bhatti, 1987).

The wall boundary condition utilized for temperature is

t ¼ tw ¼ const: ð13Þ

As pointed out by Kelkar and Patankar (1987) and Nonino and Comini (1998),
the periodicity conditions are applied to the dimensionless temperature

T ¼
t 2 tw

tb 2 tw
ð14Þ

where tb is the bulk temperature defined as

tb ¼

R
S0 jv ·njt dSR
S0 jv ·nj dS

ð15Þ

while S0 is the area of the surface parallel to the inflow/outflow boundaries, and
n is the unit vector normal to the surface.

The symmetric periodicity of T between boundaries S1 and S2 in Figure 2
leads to the condition

tðL; y; zÞ2 tw

tbðLÞ2 tw
¼

tð0; y; zÞ2 tw

tbð0Þ2 tw
ð16Þ

since T identically repeats itself from module to module. Equation (16) can be
written in the form

tðL; y; zÞ ¼ 1þ
tbðLÞ2 tbð0Þ

tbð0Þ2 tw

� �
tð0; y; zÞ2

tbðLÞ2 tbð0Þ

tbð0Þ2 tw
tw ð17Þ

Similarly, the antisymmetric periodicity between boundaries S1 and S3 in
Figure 2 leads to the condition

tðL; y;H 2 zÞ2 tw

tbðLÞ2 tw
¼

tð0; y; zÞ2 tw

tbð0Þ2 tw
ð18Þ

which can be written in the form

tðL; y;H 2 zÞ ¼ 1þ
tbðLÞ2 tbð0Þ

tbð0Þ2 tw

� �
tð0; y; zÞ2

tbðLÞ2 tbð0Þ

tbð0Þ2 tw
tw ð19Þ

Equations (17) and (19) contain two unknown quantities: the bulk temperature
at inflow tb(0) and the difference between the bulk temperatures at outflow and
inflow. However, in the solution process we can first impose the value of the
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difference in the bulk temperatures, and then we can iterate until convergence
is reached for a value of tb(0) which verifies the periodicity condition.

The average Nusselt number is defined as

Nu ¼
hDh

k
ð20Þ

where

h ¼
q

S0Dt
ð21Þ

is the average heat transfer coefficient, S0 is the heat transfer surface pertaining
to the corresponding module of a smooth channel, q is the total heat flow rate
and

Dt ¼ Dtlm ¼
½tw 2 tbðLÞ�2 ½tw 2 tbð0Þ�

ln{½tw 2 tbðLÞ�=½tw 2 tbð0Þ�}
ð22Þ

is the logarithmic mean temperature difference.
It must be pointed out that the above presentation holds well also for the

two-dimensional case, provided that the y-coordinate is neglected in the
equations.

Numerical solution
The momentum, continuity and energy equations are solved by an equal-order,
finite-element procedure based on the projection algorithm illustrated by
Nonino and Comini (1997) and Nonino et al. (1999). At each time step, a
pseudovelocity field is obtained by neglecting the pressure gradients in the
momentum equations. Then, by enforcing continuity on the pseudo-velocity
field, a tentative pressure is estimated and the momentum equations are solved
for the tentative velocity field. Afterwards, continuity is enforced again to find
pressure corrections. Pressure corrections are also used to find the velocity
corrections that project the tentative velocity field onto a divergence-free space.
Once the velocity field has been found, the energy equation can be solved
before moving to the next step.

The momentum and energy equations are considered as particular versions
of the transport equation for a generic dependent variable a. This equation is
written in the time-discretized form

g
anþ1 2 an

Dq
þ gvn · ½tv7a

nþ1 þ ð12 tvÞ7a
n�

¼ G½tG7
2anþ1 þ ð12 tGÞ7

2an� þ _s ð23Þ

where the properties g and G, and the volumetric source rate _s are identified
by inspection of the appropriate original equations. The weighting factors
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tv and tG, both in the range from 0 to 1, allow the selection of different
time-integration schemes. The pressure and the pressure correction equations
are particular versions of the Poisson equation, which can be obtained from
equation (23) by assuming g ¼ 0 and tG ¼ G ¼ 1:

The space discretization of equation (23) is based on the Bubnov-Galerkin
method, avoiding the use of upwinding. The unknown functions are
approximated by the expansions

a ¼
X

Njaj ¼ Na ð24Þ

where aj stand for the nodal values, while Nj are the interpolating/weighting
functions. Substituting equation (24) into the appropriate weak forms, yields
systems of space discretized equations that can be written as

Ha ¼ g ð25Þ

where a is the vector of nodal values, H is the effective stiffness matrix
considering all homogeneous contributions, and g is the effective load vector,
considering all non-homogeneous contributions. The periodic boundary
conditions are introduced as illustrated in detail by Comini et al. (2002) and
Nonino and Comini (2002). In particular, it must be noticed that, with reference
to the corresponding points on the inflow (i) and outflow (o) boundaries, all the
periodic boundary conditions can be expressed in the general form

ao ¼ Bai þ D ð26Þ

where the values of B and D can be easily inferred from the physical boundary
conditions. Accordingly, the matrix H and the right hand side vector g in
equation (25) are modified to consider equation (26).

In the numerical simulations, iterative algorithms were used to solve the
systems of linear equations arising at each time step from the discretization
process. The conjugate gradient squared (CGS) method, described by Howard
et al. (1990), was used to solve the discretized momentum and energy equations.
The modified conjugate gradient (MCG) method, illustrated by Gambolati
(1988, p. 136) was used to solve the symmetric systems obtained from the
discretization of the Poisson equations. In both cases, preconditioned matrices
were obtained from an incomplete LU decomposition (ILU).

Results and discussion
For the sake of simplicity, in the simulations we assumed negligible thickness
and infinite thermal conductivity of the fins. The solutions illustrated here
concern laminar flows of air ðPR ¼ 0:7Þ that range from stationary to
time-periodic and quasi-periodic. In time-periodic or quasi-periodic situations,
mean parameters were further averaged over a period or a suitable interval of
time, to have single representative values. Therefore, we obtained
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kwl ¼
1

Q

Z qþQ

q

wðqÞ dq ð27Þ

where w ¼ f ; Nu: On the other hand, to lighten the notation, the symbol k lwill
be omitted in the following.

Surface interruptions
As already pointed out, surface interruptions limit the growth of boundary
layers through periodical restarts. In Figure 3, we focus on a typical geometry
belonging to the category of the offset-strip channels that can be found in
tube-fin heat exchangers. By simplifying the flow in an actual tube-fin
exchanger to a channel flow between parallel plates, we neglect the presence of
transverse tubes. However, we can still adequately consider the fins influence
as far as the renovation of boundary layers is concerned.

In the computational cell shown in Figure 3, we can easily identify two
“standard” antiperiodic boundaries S1 and S3, and two periodic boundaries S4
and S5, where corresponding points are characterized by the same values of the
x-coordinate. At corresponding points on S4 and S5 we have not only the same
velocities, but also the same temperatures.

Figure 3.
Offset-strip channels:
computational cell and
steady state contours of
streamlines at Re ¼ 300
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tðx;H Þ ¼ tðx; 0Þ ð28Þ

Streamline contours for two-dimensional flows through offset-strip fins at
Re ¼ 300 are also represented in Figure 3. At such a relatively low Reynolds
number, the flow is regular and steady as in flat channels. However, with
respect to flat channels, we have substantial increases in both the pressure drop
and heat transfer rate, because of the renovation of boundary layers. This
behavior can be seen clearly in Figure 4 where the Nu and f values, pertaining
to fully developed flows in offset-strip channels, have been divided by the
corresponding values for flat channels (Nu0 ¼ 7:5407 and f 0 ¼ 24:00=Re) as
reported by Shah and Bhatti (1987, p. 3.30). The resulting Nu=Nu0 values have
been denoted by square symbols, while the f=f 0 values have been denoted by
triangular symbols. Above the critical value of the Reynolds number
ðRecr ø 750Þ, the flow becomes unsteady because transverse vortices,
generated at the leading edges, periodically move downstream and leave at
the trailing edges. These vortices bring fresh fluid from the main stream to the
surface and, consequently, further enhance the local heat transfer coefficients.
On the other hand, the influence of transverse vortices will be illustrated in the
next paragraph, which deals with two-dimensional wavy channels, where the
effects of surface interruptions are not superimposed.

Transverse vortices
Transverse vortices, i.e. vortices whose axis of rotation is normal to the main
flow, can be found in most compact heat exchangers where specially
configured surfaces are utilised as transverse vortex generators. For this
purpose, wavy channels have been extensively employed in the past, and are
still preferred in many low-cost applications. The geometry considered has
already been shown in Figure 1.

Figure 4.
Offset-strip channels:

Fanning friction factors
(triangles) and average

Nusselt numbers
(squares) for Re , Recr

normalized with
corresponding values for

flat channels
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Streamline contours for the flow in a two-dimensional wavy channel are
reported in Figure 5. At Re ¼ 100, the streamline contours demonstrate that the
flow is quite regular and steady. In this case, heat transfer enhancements with
respect to flat channels are only due to the increase of the exchange surface
per unit volume. At Re ¼ 500 and at Re ¼ 1;000 the flow is unsteady and
irregular, as demonstrated by the instantaneous representations of streamline
contours.

The irregularities in the flow pattern, which increase with the Reynolds
number, and the different flow regimes influence both Nusselt numbers and
friction factors. However, Figure 6 shows that the values of Nu=Nu0 (denoted

Figure 6.
Two-dimensional wavy
channels: Fanning
friction factors (triangles)
and average Nusselt
numbers (squares)
normalized with
corresponding values for
flat channels

Figure 5.
Two-dimensional wavy
channels: steady state
contours of streamlines
at Re ¼ 100 and
instantaneous contours
at Re ¼ 500 and 1,000
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by square symbols) remain approximately constant up to the critical Reynolds
number ðRecr ø 400Þ. On the contrary, values of f=f 0 (denoted by triangular
symbols) steadily increase, but at a much higher rate above Recr. As already
noted, below the critical value of the Reynolds number, heat transfer
enhancements with respect to flat channels are only due to the increase of the
exchange surface per unit volume. On the contrary, above the critical value of
the Reynolds number, heat transfer enhancements are mainly due to the
washing of the channel walls by vortices that detach periodically from the
corners and move downstream.

The transport of fluid from the walls to the core, and vice versa, is clearly
shown in Figure 7, where travelling vortices for Re ¼ 500 are represented at
intervals of one quarter of a period.

The periodic behavior of the heat transfer process is shown in Figure 8. We
consider first the time variations of the space-averaged Nusselt number, then
the corresponding power density spectra, and finally, the (u, w) phase
trajectories at a reference point in the center of the inflow section. The spectra
are obtained from the FFT analysis and refer to the peak-to-peak amplitude
ANu of the Nusselt number oscillations. At Re ¼ 1; 000 (left column), both the
Nu vs q representation and the phase diagram (an irregular but closed curve)
indicate that the time behavior is still periodic with one dominant frequency.
When expressed in terms of the Strouhal number

St ¼
Dh

Q�u
ð29Þ

Figure 7.
Two-dimensional wavy

channels: streamline
patterns for Re ¼ 500 at
intervals of one quarter

of a period
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the dimensionless value of the dominant frequency is St ø 0:24. At
Re ¼ 1;100, the behavior has become quasi-periodic, as can be inferred from
the Nu vs q representation. Correspondingly, the Fourier transform shows a
quite distributed spectrum over a broad frequency range and the phase
diagrams are “almost closed” curves.

Longitudinal vortices
As already pointed out, transverse vortices significantly enhance convection
only above the critical Reynolds number. On the contrary, longitudinal

Figure 8.
Two-dimensional wavy
channels: time behavior
of the space-averaged
Nusselt number (top),
corresponding power
density spectra (centre)
and (u, w) phase
trajectories (bottom),
at Re ¼ 1,000 (left),
and 1,100 (right)
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vortices, i.e. vortices whose axis of rotation is aligned with the main flow
direction, can produce mixing of fluid from the wall region to the core of the
flow, and vice versa, even in stationary conditions.

In a three-dimensional wavy channel of the type shown in Figure 9,
longitudinal vortices are known to develop in the vicinity of lateral walls,
because of the combined action of centrifugal and viscous forces. Figure 9
shows the characteristics of the flow at Re ¼ 200. As can be seen, the flow is
quite regular and steady, with two longitudinal counter-rotating vortices close
to the lateral walls. Secondary flows, associated with the longitudinal vortices,
clearly move fresh fluid from the walls to the center, and thus, determine an
increase of the heat transfer rate.

Longitudinal vortices are also produced by a couple of winglets in a
three-dimensional smooth channel. The geometry and the characteristics of
such a flow at Re ¼ 350 are shown in Figure 10. Once again, the velocity field is

Figure 9.
Three-dimensional wavy
channels: computational

cell and steady-state
trajectories and

transverse velocity
vectors at Re ¼ 200
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regular and steady, but the two counter-rotating longitudinal vortices move the
fluid from the walls to the center.

The influence of longitudinal vortices can be most conveniently illustrated
by referring to stationary flows in ribbed channels. The geometries considered
have already been represented in Figure 2. At Re ¼ 300, we have stationary
flows in all the configurations, and the corresponding fields are shown in
Figure 11, where plots of trajectories and velocity vectors are represented. As
can be seen, the staggered angled ribs induce two longitudinal counter-rotating
vortices, which move the fluid from the region near the walls to the center of the
channels. On the contrary, the non-staggered angled ribs induce only one

Figure 10.
Wing-type vortex
generators:
computational cell and
steady-state trajectories
and transverse velocity
vectors at Re ¼ 350
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longitudinal vortex and, practically, no mixing between near-wall and centre
flows. Transverse ribs induce transverse vortices that, in stationary flows, are
not effective as mixing promoters.

The quantitative findings concerning pressure drop and heat transfer rates
in ribbed channels are reported in Figure 12 for different Reynolds numbers, up
to the critical value. In this figure, the Nu and f values pertaining to fully
developed flow and thermal fields in ribbed square channels have been divided
by the corresponding values for smooth square channels (Nu0 ¼ 2:976 and
f 0 ¼ 14:227=Re) reported by Shah and London (1978, p. 200). As could have
been inferred from the previous qualitative discussion, only ribs that are both
staggered and angled have a beneficial effect on the heat transfer rate, even if
all rib configurations increase pressure losses. In fact, values of Nu=Nu0
(denoted by square symbols) increase steadily with Re only if ribs are both
staggered and angled. On the contrary, values of f=f 0 (denoted by triangular
symbols) increase steadily with all rib configurations.

Finally, it can be observed that, also in ribbed channels, flows become
unsteady above the critical value of the Reynolds number. The direct
calculation of the critical Reynolds number is a difficult task, because
transients become longer and longer as one approaches the critical point, and
the amplitude of the oscillations tends to zero. The values of Table I refer to

Figure 11.
Ribbed square channels:

trajectories and
transverse velocity

vectors at Re ¼ 300 with
908 and 458 ribs

(one-sided ribs on the
left; staggered ribs on the

right)
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flow conditions slightly above critical and have been found by trial-and-error.
It is interesting to note that the strength of longitudinal vortices influences
the value of the critical Reynolds number. In fact, Recr first decreases with
decreasing rib angles, because longitudinal vortices destabilize transverse
vortices. On the contrary, below a certain value of the angle, Recr increases with
decreasing rib angles, because the strength of transverse vortices tends to zero
for ribs aligned with the main flow.

Conclusions
Convection enhancing devices fall within three main categories: surface
interruptions, transverse vortex generators and longitudinal vortex generators.
Surface interruptions and transverse vortex generators can be investigated in

Figure 12.
Ribbed square channels:
apparent friction factors
(triangles) and average
Nusselt numbers
(squares) for Re , Recr,
normalized with
corresponding values for
smooth square channels

Rib angle (8) One-sided ribs Staggered ribs

90 .1,100 . 700
60 860 615
45 1,080 675

Table I.
Approximate values of
the critical Reynolds
number in ribbed
square channels
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the context of two-dimensional schematizations, while longitudinal vortex
generators require three-dimensional analyses. Irrespective of the geometry,
the flow becomes time dependent above a critical value of the Reynolds
number. Then, the effects of vortex shedding and the associated flow
unsteadiness can be captured only by solving the unsteady Navier-Stokes and
energy equations.

Surface interruptions prevent the continuous growth of boundary layers by
periodically interrupting them. Transverse vortices always increase pressure
losses, but enhance convection only above the critical value of the Reynolds
number, when vortex shedding brings fresh fluid from the main stream to the
wall surfaces. On the contrary, longitudinal vortex generators can be effective
even in stationary flows.
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